As mentioned above, much less is known about the structural characteristics and mechanisms of the nonheme metal-containing monooxygenase enzymes. From the similarities of the overall stoichiometries of the reactions and the resemblance of some of the enzymes to dioxygen-binding proteins, it is likely that the initial steps are the same as those for cytochrome P-450, i.e., dioxygen binding followed by reduction to form metal-peroxide or hydroperoxide complexes. It is not obvious that the next step is the same, however (i.e., 0-0 bond cleavage to form a high-valent metal-oxo complex prior to attack on substrate). The problem is that such a mechanism would generate metal-oxo complexes that appear to contain metal ions in chemically unreasonable high-oxidation states, e.g., Fe v, CuIII , or CuIV (Reactions 5.79-5.81).
An alternative mechanism is for the peroxide or hydroperoxide ligand to attack the substrate directly; i.e., 0-0 bond cleavage could be concerted with attack on substrate. Another possibility is that the oxygen atom is inserted in a metalligand bond prior to transfer to the substrate. Neither of these alternative mechanisms has been demonstrated experimentally. These various possibilities remain to be considered as more information about the monooxygenase enzymes becomes available.
Tidak ada komentar:
Posting Komentar