The major biochemical targets of O2 toxicity appear to be lipids, DNA, and proteins. The chemical reactions accounting for the damage to each type of target are probably different, not only because of the different reactivities of these three classes of molecules, but also because of the different environment for each one inside the cell. Lipids, for example, are essential components of membranes and are extremely hydrophobic. The oxidative damage that is observed is due to free-radical autoxidation (see Reactions 5.16 to 5.21), and the products observed are lipid hydroperoxides (see Reaction 5.23). The introduction of the hydroperoxide group into the interior of the lipid bilayer apparently causes that structure to be disrupted, as the configuration of the lipid rearranges in order to bring that polar group out of the hydrophobic membrane interior and up to the membrane-water interface.6 DNA, by contrast, is in the interior of the cell, and its exposed portions are surrounded by an aqueous medium. It is particularly vulnerable to oxidative attack at the base or at the sugar, and multiple products are formed when samples are exposed to oxidants in vitro. 6 Since oxidation of DNA in vivo may lead to mutations, this type of damage is potentially very serious. Proteins also suffer oxidative damage, with amino-acid side chains, particularly the sulfur-containing residues cysteine and methionine, appearing to be the most vulnerable sites
Tidak ada komentar:
Posting Komentar